Mixed Sums of Primes and Other Terms

نویسندگان

  • ZHI-WEI SUN
  • Douglas McNeil
چکیده

In this paper we study mixed sums of primes and linear recurrences. We show that if m ≡ 2 (mod 4) and m+1 is a prime then (m2n−1−1)/(m−1) 6= m+p for any n = 3, 4, . . . and prime power p. We also prove that if a > 1 is an integer, u0 = 0, u1 = 1 and ui+1 = aui + ui−1 for i = 1, 2, 3, . . ., then all the sums um + aun (m, n = 1, 2, 3, . . .) are distinct. One of our conjectures states that any integer n > 4 can be written as the sum of an odd prime and two positive Fibonacci numbers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher Correlations of Divisor Sums Related to Primes I: Triple Correlations

We obtain the triple correlations for a truncated divisor sum related to primes. We also obtain the mixed correlations for this divisor sum when it is summed over the primes, and give some applications to primes in short intervals.

متن کامل

On Silverman's conjecture for a family of elliptic curves

Let $E$ be an elliptic curve over $Bbb{Q}$ with the given Weierstrass equation $ y^2=x^3+ax+b$. If $D$ is a squarefree integer, then let $E^{(D)}$ denote the $D$-quadratic twist of $E$ that is given by $E^{(D)}: y^2=x^3+aD^2x+bD^3$. Let $E^{(D)}(Bbb{Q})$ be the group of $Bbb{Q}$-rational points of $E^{(D)}$. It is conjectured by J. Silverman that there are infinitely many primes $p$ for which $...

متن کامل

Unambiguous Evaluations of Bidecic Jacobi and Jacobsthal Sums

For a class of primes p = 1 (mod 20) for which 2 is a quintic nonresidue, unambiguous evaluations of parameters of bidecic Jacobi and Jacobsthal sums (modp) are presented, in terms of the partition p = a + 5b+5c+5d, ab = d — c—cd. Similar results for sums of other orders have been obtained by E. Lehmer and by K. S. Williams. Subject classification (Amer. Math. Soc. (MOS) 1970): 10G05.

متن کامل

Higher Correlations of Divisor Sums Related to Primes Iii: Small Gaps between Primes

We use divisor sums to approximate prime tuples and moments for primes in short intervals. By connecting these results to classical moment problems we are able to prove that, for any η > 0, a positive proportion of consecutive primes are within 4 + η times the average spacing between primes. Authors’ note. This paper was written in 2004, prior to the solution, in [8], of the problem considered ...

متن کامل

Valuations and Combinatorics of Truncated Exponential Sums

A conjecture of G. McGarvey for the 2-adic valuation of the Schenker sums is established. These sums are n! times the sum of the first n+1 terms of the series for e. A certain analytic expression for the p-adic valuation of these sums is provided for a class of primes. Some combinatorial interpretations (using rooted trees) are furnished for identities that arose along the way.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009